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Abstract. We present a method for 3D pose estimation of human motion in gen-
erative framework. For the generalization of application scenario, the observation
information we utilized comes from monocular silhouettes. We distill prior in-
formation of human motion by performing conventional PCA on single motion
capture data sequence. In doing so, the aims for both reducing dimensionality and
extracting the prior knowledge of human motion are achieved simultaneously. We
adopt the shape contexts descriptor to construct the matching function, by which
the validity and the robustness of the matching between image features and syn-
thesized model features can be ensured. To explore the solution space eÆciently,
we design the Annealed Genetic Algorithm (AGA) and Hierarchical Annealed
Genetic Algorithm (HAGA) that searches the optimal solutions e�ectively by
utilizing the characteristics of state space. Results of pose estimation on di�er-
ent motion sequences demonstrate that the novel generative method can achieves
viewpoint invariant 3D pose estimation.

1 Introduction

Capturing 3D human motion from visual cues has received increasing attention in recent
years, due to the drive from a wide spectrum of potential applications such as behavior
understanding, content-based image retrieval and visual surveillance. Although having
been attacked by many researchers, this challenging problem is still long standing be-
cause of the diÆculties conduced mainly by complicated nature of 3D human motion
and incomplete information of 2D images for 3D human motion analysis.

In the context of graphical models, the state-of-art approaches of 3D human motion
estimation can be classified as generative and discriminative [1]. Generative methods
[2,3,4,5,6,7] follow the bottom-up Bayes’ rule and model the state posterior density
using observation likelihood or cost function. Given an image observation and prior
state distribution, the posterior likelihood is usually evaluated using Bayes’ rule. This
approach has a sound framework of probabilistic support and can achieve significant
success for recovering complex unknown motions by utilizing well-defined state con-
strains. However, it is generally computationally expensive because one had to perform
complex search over the state space in order to locate the peaks of the observation like-
lihood. Moreover, prediction model and initialization are also the bottlenecks of the
approach especially in tracking situation.

Y. Yagi et al. (Eds.): ACCV 2007, Part I, LNCS 4843, pp. 419–429, 2007.
c� Springer-Verlag Berlin Heidelberg 2007



420 X. Zhao and Y. Liu

In this paper, we propose a novel generative approach in the framework of evolu-
tionary computation, by which we try to widen the bottlenecks mentioned above with
e�ective search strategy embedded in the extracted state subspace. Considering the gen-
eralization of application scenario, the observation information we utilized comes from
an uncalibrated monocular camera. This makes the state estimation get into severe ill-
conditioned problem. And, we have to confront the curse of dimensionality because
there are more than forty degrees of freedom (DOFs) of full body joints in our 3D hu-
man model. Therefore, the process for searching optimal solutions should be performed
in some compact state space by the search algorithms which suit for the characteristics
of this space. In doing so, infeasible solutions, namely, the absurd poses can be avoided
naturally. To this end, we consider to reduce the dimensionality of state space by princi-
pal component analysis (PCA) of motion capture data. Actually, the motion capture data
embody the prior knowledge about human motion. By PCA, the aims at both reducing
dimensionality and extracting the prior knowledge of human motion are achieved si-
multaneously. From the theoretical view, PCA is optimal in the sense of reconstruction
because it allows the minimal information loss in the course of state transformation
from the subspace to original state space. Di�erent from the previous works [8,9], we
perform the lengthways PCA, by which the subspace can be extracted from only single
sequence of motion capture data.

To explore the solution space eÆciently, we design the Annealed Genetic Algorithm
(AGA) combining the ideas of simulated annealing and genetic algorithm [10]. As the
promoted version of AGA, Hierarchical Annealed Genetic Algorithm (HAGA) searches
the optimal solutions more e�ectively than AGA by utilizing the characteristics of state
space. According to the theory of PCA, in our problem, the first principle component
captures the most important part of human motion and the rest of principle components
capture the detailed parts of this motion. In monocular uncalibrated camera situation,
the fitness function (observation likelihood function) is very sensitive to the change of
global motion. The HAGA performs hierarchical search automatically in the extracted
state subspace by localizing priorly the state variables such as the global motions and
the coordinate of the first principle component which dominate the topology of state
space. We adopt the shape contexts descriptor [11] to construct the fitness function,
by which the validity and the robust matching between image features and synthesized
model features can be achieved.

1.1 Related Work

There has been considerable previous work on capturing human motion from image
information. The earlier work on this research topic had been reviewed comprehen-
sively by the survey papers [12,13,14]. Generally speaking, to recover 3D human pose
configuration, more information are required than image can provide especially in the
monocular situation. Therefore, much work focus on using prior knowledge and expe-
riential data in order to alleviate the ill-condition of this problem. Explicit body model
embodies the most important prior knowledge about pose configuration and thus be
widely used in human motion analysis. Another class of important prior knowledge
comes from the experiential data such as motion capture data acquired by commercial
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motion capture system and other hand-labeled data. The combination of the both prior
information can produces favorable techniques for solving this problem.

Agarwal et al. [5] distill prior information (the motion model) of human motion
from hand-labeled training sequences using PCA and clustering on the base of a simple
2D human body model. This method presents a good autoregressive based tracking
scheme but has no description about pose initialization. In the framework of generative
approach, the prior information is usually employed to constrain or reduce the search
space. Urtasun et al. [15,9] construct a di�erentiable objective function based on the
PCA of motion capture data and then find the poses of all frames simultaneous by
optimizing a function in low-dim space. Sidenbladh et al. [3,8] present similar methods
in the framework of stochastic optimization. For a specific activity, such methods need
many example sequences of motion capture to perform PCA and all of these sequences
must keep same length and same phase by interpolating and aligning. Ning et al. [6]
learn a motion model from semi-automatically acquired training examples which are
aligned with correlation function, and then, some motion constrains are introduced to
cut the search space. Unlike these methods, we extract the state subspace from only
one example sequence of a specific activity using the lengthways PCA and thus have
no use for interpolating or aligning. In addition, useful motion constraints are included
naturally in the low-dim subspace.

In recent years, particle filter [16] (also known as condensation algorithm) based
optimization methods are used widely for recovering human pose in generative frame-
work [2,3,4,5,6,7]. However, as a stochastic search algorithm, we think that particle
filter is essentially similar with evolutionary algorithm (EA) if having no explicit tem-
poral dynamic model. The EA can provide more flexible evolutionary mechanism such
as crossover operator. This is the important motivation for us to solve this problem in the
framework of EA. A noticeable example showing the relationship between particle filter
and EA is the work of Deutscher et al. [17]. By introducing the crossover operator, the
annealed particle filter proposed in theirs earlier work [2] get remarkable improvement.

Comparing with previous generative methods, extracting the common characteris-
tic of a special types of motion from prior information and represent them with some
compact forms are of particular interests to us. At the same time, we ensure the motion
individuality of the input sequences with e�ective evolutionary search strategy suiting
for the characteristic of state subspace.

2 State Space Analysis

The potential special interests motivate us to analyze the characteristics and structure of
the state space. Such interests involve mainly modeling the human activities e�ectively
in the extracted state subspace and eliminating the curse of dimension.

2.1 Pose Representation

We use a explicit model that represent the articulated structure of the human body. Our
fundamental 3D skeleton model (see Figure 1.a) is composed of 34 articulated rigid
sticks. The pose is described by a 44 dimensional vector x � �xg� x j�, where 3D vector
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Fig. 1. (a) The 3D human skeleton model. (b) The 3D human convolution surface model. (c) The
2D convolution curves.

xg represents the global rotations of human motion and 41D vector x j represents the
joint angles.

Figure 1.b shows the 3D convolution surface [18] human model which actually is an
isosurface in a scalar field defined by convolving the 3D body skeleton with a kernel
function. Similarly, the 2D convolution curves of human body as shown in Figure 1.c
are the isocurves generated by convolving the 2D projection skeleton. As the synthetical
model features, the curves are used to match with the edges of image silhouettes for
constructing the likelihood function.

2.2 Subspace Extraction

All of the 3D poses distribute in the state space X. The pose set which belongs to
a special activity, such as walking, running, handshaking, etc., generally crowd in a
subspace of X. We extract the subspace Xs from motion capture data obtained from the
CMU database (http:��mocap.cs.cmu.edu�).

Assuming �xt � xt � X� is a given data sequence of motion capture corresponding
to one motion type, where t is the time tag, the subspace Xs is extracted by PCA as
follows:

1. Centering the state vectors and assembling them into a matrix (by rows):
X � [(x1 � c); (x2 � c); � � � ; (xT � c)], where c is the mean vector.

2. Performing a singular value decomposition of the matrix to project out the domi-
nant directions: X � U D VT .

3. Projecting the state vectors into the dominant subspace: each state vector is repre-
sented as a reduced vector xs � (x � c) Um, where Um is the matrix consisting of
first m columns of U, by which the m-D subspace Xs is spanned.

Therefore, the original state vector x can be reconstructed by:

x � c � xs UT
m (1)

The dimensionality m of subspace Xs is determined according to the cumulative sum �

of principal component variance percentage. With our experiences, the value of � is set
to be not smaller than 0�95; accordingly, the value of m is not greater than 6 generally.
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3 Fitness Function

In generative framework, pose capturing can be formulated as Bayesian posterior dis-
tribution inference:

p(xs � y) � p(xs)p(y � xs) (2)

The function p(y � xs) represents the likelihood observing in image y, conditioned on a
pose candidate xs. It is used to evaluate every pose candidate generated from p(xs). In
the context of evolutionary algorithm, the likelihood function is just the fitness function.
We propose a fitness function on the basis of shape contexts matching [11].

We choose the image silhouette of subject as the observed image feature, which
is extracted using statistical background subtraction. The shape context descriptor is
used to describe the shape of image silhouette and convolution curves generated by the
pose candidate (see Figure 1). Figure 2 illustrate the shape contexts [11] (histograms of
local edge pixels into log-polar bins) of human shape. Our shape contexts contain 12
angular � five radial bins, giving rise to 60-dimensional histograms as shown in Figure
2.b. In the matching process, the regularly spaced points on the edge of the silhouette
are sampled as the query shape. The point set sampled from the convolution curves is
viewed as the candidate shape. Before matching, the image shape and the candidate
shape are normalized to same scale. We represent the query shape and the candidate
shape as S query(y ) and S m(xs) respectively. To this end, the matching cost function is
formulated as:

F(S query(y)� S m(xs)) �
r�

j�1

�
2(S C j

query(y)� S Cm(xs)�) (3)

where S C is the shape context, r is the number of sample point on the edge of image
silhouette, and S Cm(xs)� � argminu�

2(S C j
query(y)� S Cu

m(xs)). Here, we use the �
2 dis-

tance as the similarity measurement. In AGA, the optimization mechanism are designed
for searching the maximal value of object function. Therefore, according to Eq. (3), the
fitness function can be reformulated as:

� (S query(y)� S m(xs)) � C 	 exp(�F(S query(y)� S m(xs))) (4)

where C is a constant for adjusting the value range of fitness function.

4 Pose Estimation Using HAGA

In this section, we describe the key algorithms of the generative framework, namely, the
AGA and HAGA, and theirs adaption for pose estimation from monocular silhouettes.

4.1 Hierarchical Annealed Genetic Algorithm

Combining simulated annealing (SA) and genetic algorithm (GA), we design the an-
nealed genetic algorithm, which actually is a hybrid (1�1) evolutionary strategy. In our
algorithm, the local optimal solutions are avoided by introducing several genetic evo-
lutionary principles. We represent chromosome by state vector as x � [x1� x2� � � � � xn],
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(b )(a)

Fig. 2. (a) The shape contexts computed on edge points of image silhouette (right) and sampled
points of convolution curves (left). (b) The example shape contexts for reference samples showed
in (a) of image silhouette (bottom) and convolution curves (top).

where the genes �xi � i � 1� 2� � � � � n� are random numbers uniformly distributed in the
interval (0� 1). We use real encodings. The algorithm searching for optimal solutions
with the AGA is described as follows:

Parameter initialization set values for evolution control parameters:
S t – stop criteria;
Nt – termination condition;
Et – times for searching a equation state;
for st � 1 to S t do:

NonImproveNum 
 0;
Generate the genes of x uniformly at random in the interval (0� 1);
Evaluate the fitness function � (x) by mapping x onto the problem domain;
while (NonImproveNum � Nt) do

for et � 1 to Et do:
Evolution of x driven by the genetic operators; (see Table 1.)
Evaluate � (x);

end for
If the value of fitness function is improved, NonImproveNum 
 0, else
NonImproveNum 
 NonImproveNum � 1;

end while
Record the optimal x;

end for

We design five genetic operators, which are executed orderly in AGA. The operators
are introduced by evolving a example chromosome x � [x1� x2� x3� x4� x5� x6]. The new
chromosome generated by the operators is denoted as x

�

. Assuming the positions gener-
ated randomly are number 2 and number 6 or number 3 ( for point mutation operator),
for example, the five operators are illustrated in Table 1. (The new genes are represented
as x

�

). On the basis of AGA, we develop a HAGA by utilizing the characteristics of state
space X. In HAGA, the state space is decomposed automatically by computing the vari-
ances of state components which are generated in each annealing run. According to the
variances of state components, the state space is partitioned by localizing down the im-
portant components to a small area of theirs range. It is explainable in theory because
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Table 1. The genetic operators in AGA

Operators Example

Exchange x � [x1� x2� x3� x4� x5� x6] �� x
�

� [x1� x6� x3� x4� x5� x2]

Segment reversion x � [x1� x2� x3� x4� x5� x6] �� x
�

� [x1� x6� x5� x4� x3� x2]

Segment shift x � [x1� x2� x3� x4� x5� x6] �� x
�

� [x1� x6� x2� x3� x4� x5]

Point mutation x � [x1� x2� x3� x4� x5� x6] �� x
�

� [x1� x2� x
�

3� x4� x5� x6]

Segment mutation x � [x1� x2� x3� x4� x5� x6] �� x
�

� [x1� x
�

2� x3
�
� x4

�
� x5

�
� x6

�]

the important state components dominate the topology of the state space and the lit-
tle changes of theirs value can produce great e�ect whereas the values of other state
components had little influence on whether they were selected or not. This theory is il-
lustrated in Figure 3. Focusing only on one annealing run of sate evolution (st � st�1),
we describe the detailed HAGA as follows.

1. Generate initial chromosome x � [x1� x2� � � � � xn] at random, where �xi � i � 1�
2� � � � � n� are random numbers uniformly distributed in the interval (0� 1). Mapping
it linearly into the variance domain:

x �� xt � (min xt� max xt) (5)

In the first round of state evolution, (min x1� max x1) � (0� 1). Evaluating the fitness
function � (x).

2. Evolve the chromosome according to the state evolutionary mechanism of AGA.
Before evaluating the fitness function, every new chromosome needs to be mapped
onto the variance domain as formulated in Eq.5.

3. Store N best states (chromosomes) and computing the covariance matrix:

Vt�1 �
1
N

N�
i�1

(xi
t�1 � xc

t�1)T 	 (xi
t�1 � xc

t�1) (6)

where xc
t�1 is the mean vector, and the covariance matrix Vt�1 is a diagonal matrix

on the assumption that the state components are independent each other. To this
end, the variance domain can be formulated as:�

min xt�1 � xc
t�1 � ct�1Vt�1

max xt�1 � xc
t�1 � ct�1Vt�1

(7)

where ct�1 � [ct�1� ct�1� � � � � ct�1] is used to adjust the variance domain and ct�1 is a
positive constant.

4. The variance domain (min xt�1� max xt�1) is used to cut down the state space in next
state evolution.

4.2 Experiments

We demonstrate our method by extracting subspaces for di�erent classes of human
motion and using them to estimate 3D body pose in unseen video sequences.
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(b )(a) (c )

Fig. 3. Variance reduction contrast between principal state components and other state compo-
nents. Graph (a) shows the variances of state set in which the chromosomes have not been
evolved, displaying almost equal variances for each components. Graph (b) shows the variances
of state set which have come through one round of state evolution, noticing that the variances of
first four principal state components have been greatly reduced whereas the variances of other
components have been reduced with a slighter extent. In graph (c), the variances of the princi-
pal components have been reduced to very small scopes indicating advanced localization after
coming through two rounds of state evolution.

Walking motion: straight walk and turning walk. To extract the motion subspace of
walking, a data set consisting of motion capture data of a single subject was used. The
total frame number is 316. It was found that the di�erent subject and di�erent frame
numbers can produce generally identical subspace. To keep the ratio of information
loss lower than 0.05, the dimensionality of the subspace was choose to be 5. For the
sequence of one subject walking in a straight line, the parameters of HAGA are set as
S t � 2� Nt � 2� Et � 5. The results are showed in Figure.4. It can be seen that the
estimator is successful in determining the correct global motion as well as the 3D pose
of the subject. The occlusion problem are tackled by searching the optimal pose in the
extracted subspace because the prior knowledge about walking motion is contained in

Fig. 4. Results of recovering the poses of a subject walking straight. (the images are part of a
sequence from www.nada.kth.se� hedvig�data.html). The second pose demonstrated the left-right
confusion in the silhouette.
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Fig. 5. Results of recovering the poses of a subject performing a turning walking motion

this space. The left-right confusion is mostly disambiguated, however, in few frames,
the left-right confusion conduced by silhouette ambiguity still exist. This can be seen
from Figure. 4. We test the generalization capability of our method in a turning walk
sequence. In this sequence [19], a subject is performing continuing turning walking
motion around a circle therefore the global motion is changed in a wide range. The
parameters of HAGA are set as S t � 2� Nt � 2� Et � 5. The results can be seen in
Figure.5.

Running motion. The subspace of running motion is extracted from motion capture
data that consisted of 130 frames. This subspace is more compact than that of walking
motion. Figure.6 shows the estimation results of 3D poses.

Fig. 6. Results of recovering the poses of a subject performing a running motion. The images are
extracted from the video taken from the web site http:��mocap.cs.cmu.edu�.



428 X. Zhao and Y. Liu

5 Conclusion

We have discussed a novel generative approach to estimating 3D human pose from a
single camera. Our approach is a step towards describing motion characteristic of high-
dimensional data spaces by extracting its subspace. From motion capture data, we not
only distilled the prior knowledge about human motion, but also reduced the dimen-
sionality of problem. In the compact subspace, we perform e�ective search for finding
the optimal poses. To explore the solution space eÆciently, we designed the AGA and
HAGA, by which the optimal solutions can be searched e�ectively by utilizing the char-
acteristics of state subspace. The robust shape contexts descriptor allows us using the
silhouettes as image features. The approach was tested on di�erent human motion se-
quences with good results, and allows the estimation of complex unseen motions in the
presence of image ambiguities. In terms of future work, the more interior edge infor-
mation need be added to disambiguate some challenging sequences. Including a wider
range of motion capture data would allow the estimator to cover more types of human
motions.
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